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Newman's similarity model of convective diffusion of ions through multi-ionic concentration 
boundary layer in the presence of electric field is generalized for non-linear velocity profiles in 
the diffusion layer, and put into a form that can be integrated by the Runge-Kutta method. 
The results of a numerical solution are compared with voltammetric data from the literature. 

---------------------------------------------------------------------

Quantitative treatment of electrochemical data obtained in electrodiffusion diagnostics of convec
tion processesl and in electroanalytical chemistry 2 is based on phenomenological models of 
transport processes in electrolytic cells3 . Usually, it is necessary to model phenomena in three 
subregions arranged in series: at the surface of the working electrode, in a thin adjacent diffusion 
layer. and in the bulk of the solution3 •4 • The dynamics of the electrode process is represented 
by the dependence of the current density on the composition of the solution at the electrode 
surface and on the surface overpotential. In the bulk of the liquid, the problem of current con
duction at constant composition and conductivity must be solved. The solution of the convective 
diffusion problem in a thin diffusion layer for arbitrary surface concentrations gives the difference 
between the concentration and potential at the electrode surface and at the outer boundary 
of the diffusion layer as functions of the current density J. This information permits to join the 
description of the electrode reaction kinetics with that of the transport in the diffusion layer to 
give complex boundary conditions for the solution of the problem about potential and current 
density distributions in the bulk of the liquids. 

The mathematical description of the transport phenomena in solutions containing more than 
two ionic components is much complicated by taking the migration into account3 - 6 even in 
the limiting current regime, where the de polarizer concentration at the surface of the working 
electrode is negligible against that in the bulk. Whereas without migration the transport equations 
for thc particular species are linear and mutually interrelated only by the stoichiometry of the 
electrode reaction, in the presence of the migration transport a system of simultaneous differential 
equations bound through migration terms with the unknown potential gradient must be con
sidered. For multi-ionic systems, only particular numerical solutions are known, published for 
several systems with 3 - 5 components3 - 6 using tabulated values of the diffusion coefficients 7 • 

Such results are only of limited significance for quantitative treatment of the measured limiting 
current densities to obtain the real diffusivities, since the diffusion coefficients of the ionic species 
are strongly dependent on the ionic strength even in very dilute solutions8 • 

The contemporary state of the computer technique and its extent of exploitation caused a prin
cipal change in the views about working with complicated mathematical models. Tabulated 
data from isolated numerical solutions are no more in the focus of interest. but either correlations 
based on extensive data calculated for wide regions of input parameters, or the relevant applica
tion programs suitable for users who are not specialists in the theory or in numerical mathematics 
are desired. 
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The present work is a continuation of that of Newman4 ,s, who showed that for 
a concentration boundary layer in a laminar flow regime, the electric potential field 
can be expressed by using the same similarity transformation as for the concentration 
field. The sort of problems considered by Newman4 . 5 is here, at the same similarity 
structure of the resulting boundary value problem, generalized for cases with non-zero 
depolarizer concentration at the electrode surface and for non-linear velocity profiles 
in the diffusion layer, which is important when non-Newtonian liquids are considered. 

The results of the classical theory of the concentration boundary layer3 , in which 
the migration effects are neglected, are considered as a special case of the general 
theory, for which the results, especially the current density distribution at the electrode 
surface, J dif = Jdif(X, t), are known. The influence of migration on the measured 
currents in a real electrochemical experiment is then expressed as E = J I J dif, where 
J = J(x, t) is the local current density at a given composition of the bulk solution. 

For the numerical solution of the resulting system of simultaneous non-linear 
equations, a new and highly effective algorithm is proposed. Its structure is described 
to a limited extent, which is indispensable for working with the application program 
MIGR-l. 

THEORETICAL 

Starting Transport Equations in the Diffusion Layer Approximation 

Phenomenological description of isothermal transport of ionic species in not too 
concentrated strong electrolyte solutions in the presence of a not too strong electric 
field is based on the following four equations: 

(1) 

(2) 

(3) 

(4) 

The dependences of the activity coefficients and diffusion coefficients on the com
position of the solution can be expressed as functions of a single independent param
eter, namely ionic strength of the solution, defined as 

(5) 

The assumptions Dj = const. and 

Ci VfiJRT = VC i + ZiCi VP (6) 
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are therefore plausible not only for infinitely dilute solutions (r - 0), but also for 
such cases where it can approximately be assumed that r = const. 

Substitution of the thermodynamic constitutive equation (6) into the transport 
constitutive equation (2) leads to the usual expression for the fluxes 

(7) 

which is compatible with the Nernst-Einstein relation between diffusivities and 
mobilities of ions. The basic transport equation in molar concentrations follows by 
substituting Eq. (7) into (3) and observing the condition of incompressibility V. v = 
= 0: 

(8) 

In typical electrodiffusion experiments1 ,2, the concentration changes due to a hetero
geneous reaction at the working electrode are only significant in a thin solution layer 
adjacent to the electrode surface. The notion of the diffusion layer4 based on this 
fact permits to simplify both the transport equations (8) and the boundary condi
tions, which can now be situated at the boundaries of the diffusion layer. 

At a given velocity field close to the working electrode, it is possible to choose 
orthogonal curvilinear coordinates (z, x, y) so that z is the distance from the electrode 
surface and x is the distance between a point on the electrode surface and the leading 
edge of the electrode along the streamline. Assuming that the thickness of the dif
fusion layer is much smaller than the dimensions of the electrode, we may neglect 
both the macroscopic curvature of its surface and the longitudinal component of the 
concentration gradient. If the electric field in the diffusion layer is only due to elec
trode processes at the working electrode and the corresponding transport of ions, 
the longitudinal component of the intensity of the electric field can be neglected as 
well. The resulting transport equations in the diffusion layer approximation can be 
written as follows: 

(Nj)x = CjVX' (Nj)y = 0, 

(NJz = CjVz - Dj(ozc j + ZjCjOzp) (9) 

(10) 

Summation of the transport equations (10) multiplied by Zj, observing the eIectro
neutrality condition (1) and integrating gives the basic result of the theory of multi
-ionic diffusion layer, viz., that the current density at a given point is independent 
of the Z coordinate, ozJz = 0, 

(11) 
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and equal to the current density at the electrode surface, J: 

J: = J(x, t). (12) 

The electrode process can be formulated by the stoichiometric relation 

(13) 

For the species consumed in the reaction (further: working depolarizers), we have 
Si > 0, while for those produced (further: auxiliary depolarizers) Si < 0, and for 
other (indifferent) species Si = O. The stoichiometry of the reaction leads to the 
balance of the charge transferred 

(14) 

and to the balances of the fluxes at the electrode surface, Z = 0 

(15) 

representing the boundary conditions for our problem at the inner boundary of the 
diffusion layer. Its outer boundary can, with regard to the transport inside the dif
fusion layer, be situated at an "infinite" distance from the electrode surface, Z ~ Jo(x), 
i.e. in the bulk of known composition, CDi: 

(16) 

When the existence and uniqueness of the solution for the transport model of the 
diffusion layer is considered, it should be kept in mind that this model forms only 
a part of a broader description of processes in an electrolytic cell, which, in general, 
must take into account the ohmic voltage drop in the bulk of the liquid and the 
kinetics of the electrode reaction as function of the overpotential between the 
working and auxiliary electrodes. Nevertheless, isolated study of transport processes 
in the diffusion layer can be based on the circumstance that the system of transport 
equations (10) with boundary conditions (15) and (16) supplemented by the local 
electroneutrality condition (1) and eventual initial equilibrium conditions for t = 0 

(17) 

has a single remaining degree of freedom. This can be fixed, e.g., by assuming that 
the current density is given as J = J(x, t). However, not every such apriori given 
function is compatible with the condition that Ci ~ 0 for all concentration distribu-
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tions in the diffusion layer. As a special case, when the current density is gradually 
increased to reach its limiting value, J --+ J 1im, the surface concentration of one of the 
working depolarizers approaches zero, CWi --+ O. This species is the "clue" depolarizer 
limiting the intensity of the electrode process at a given bulk composition, CBi' and 
a given stoichiometry of the electrode process, Si. In the text below, the distribution 
of the current densities over the electrode surface, J = J(x, t), as function of the 
assumed distribution of the surface concentration of the clue depolarizer will be 
.considered as the solution of the problem. The clue depolarizer is denoted by the 
subscript i = 1, its stoichiometric number S1 = 1, and its surface concentration is 
given as 

(18) 

It should be noted that the calculations of migration currents published hitherto 
were done for the limiting conditions, i.e. 

w = o. (19) 

The problem about the influence of the concentration parameter w on the transport 
in the diffusion layer was solved recently9 on the basis of the Nernst stagnant layer 
approximation. 

Similarity Formulation 

The system of partial differential equations (10) lacks the initial conditions such as 
definitions of starting concentration profiles ci(z) for x = o. This circumstance is 
not accidental but is related with the local character of the transport model in the 
boundary layer approximation. To calculate the local current density at a given 
w = w(x, t) and a given velocity field vx , VZ, it is sufficient to know these parameters 
in a relatively small region around the point considered on the electrode surface. 
The existence of so-called similarity solutions is a formal reflexion of the local cha
racter of the transport equations for the diffusion layer. 

The similarity solutions are formulated on the assumption that the concentration 
and potential fields can be expressed by functions of a single similarity argument, Z, as 

Ci(X, z, t) = CB1 Ci(Z) , 

p(x, z, t) = p(Z) , 
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In this formulation, the concentration fields are normalized by the concentration 
of the clue depolarizer in the bulk, CHl' The parameter ~o represents an estimate 
of the local diffusion thicknesses, the function a(x, t) and the constant p depend on 
the transport regime only, i.e. on the velocity field and on the function w(x, t). 

Substitution of the equations (20)-(22) into the transport equation (10) for the 
stationary state and the assumption C i = C;{Z) lead to the differential equation 

(24) 

where 

(25) 

The following equation is important for the similarity transformation: 

(26) 

This expresses not only the definition of the function H'(Z), but also the assumption 
that (\(x) can be found such that the expression on the right-hand side be function 
of Z = z/~o(x), i.e. of a single argument, in the considered range of the variables x 
and z. 

A sufficient condition for the existence of such a transformation in the local sense 
is the existence of a representation of the longitudinal velocity field in the product 
form 

= p( ) d2 h(z) v'" x , 
dz2 

(27) 

where the function h(z) is further expressed as 

h(z) ,..., Zp+2 . (28) 

The equation of continuity written for the boundary layer in curvilinear x, z co
ordinates 

(29) 

gives the following expression for the normal velocity component in the central 
region of the diffusion layer 

v = z 
_ dh P(x) dIn rp . 

dz dx 
(30) 
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Substitution of the velocity fields according to equations (27)-(30) into the condition 
(26) leads to an expression for the function H'(Z) in the form of Eq. (28) 

(31) 

and to the following differential equation for the effective thickness of the diffusion 
layer 

--p+ --+---(j~+2 fJ(x) [( 1) d In (jo dIn r] _ 1 
D 1 X d In x d In x 

(32) 

with a known solution (jo = D~o'(x), where 

q = 1/(p + 2), (33) 

[ fx ]1/(P+2) 
CT(X) = (rp)-<P+l) (p + 2)2 0 (fJrP +2)1/(P+l) dx (34) 

For linear velocity profiles, p = 1, this procedure is known as the Lighthill-Acrivos 
transformation4 ; for other p values an analogous transformation is considered in 
refs10 •ll • 

It is not necessary to assume that the function H(Z) can be expressed in a power 
form. For example, for streaming in the forward critical region, where the normal 
velocity profile is independent of the longitudinal coordinate, v" = h'(z), the func
tion H(Z) can be introduced implicitly by the following definition involving an ar
bitrary constant parameter (jo: 

(35) 

The form parameter p is then defined as 

p + = ----- , 1 dIn v"l 
din z %=6/2 

(36) 

where (j is the true diffusion thickness and the quantity CT depends somewhat on the 
diffusion coefficient. 

The similarity system of differential equations (24) is also obtained in some pro
blems concerning transient transport phenomena after stepwise change of conditions 
on the electrode surface. This is especially the case of CottrelIian diffusion (penetra
tion of the diffusion layer into motionless liquid4 •12 under potentiostaticconditions) 
and of the transient process on a dropping electrode growing at a constant volume 
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rate4 ,13. In these cases, Eqs (10) must be solved with the initial condition 

_ { CD1 (t < 0) 
CWI -

. WCDI (t > 0) 
(37) 

and the similarity transformations are given by Eqs (20)-(23), where 

p = 0, (j = K .jt . (38) 

The dimensionless constant K ensuring the normalized form H'(Z) = 2Z depends 
on the type of the process considered. For Cottrellian diffusion4 ,12 we have K = 2, 
for a growing Hg drop K = .j(12/7). The similarity equations (24) have the same 
form as in steady-state convective transport involving perfect sliding of the liquid 
over the electrode surface14• 

In addition to the Cottrellian diffusion model, also the Nernst model of the stagnant 
layer4 ,15 can be included in the class of problems considered. In this case we have 
p -+ 00; obviously 

lim H'(Z) = {O 
p-+oo 00 

and () = ()o is an arbitrary constant. 

for Z < 1 

for Z> 1 
(39) 

Substitution of the transformation equations (20)-(23) into Eq. (11) for the 
current density leads to the equation 

(40) 
where 

(41) 

is the "eigenvalue" of the boundary value problem considered, for which the calcula
tion of the constant parameter J* represents the main goal. 

The similarity formulation of boundary conditions and local electroneutrality 
conditions is obviously 

Cilz -+ oo = CBi = CDi/CD1 , 

(C; + ZiCiP')lz=o = C~i + ZiCWiP~ = sibJ*/n* , 

C1lz=o = W, 

(42) 

(43) 

(44) 

(45) 
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For discussion of the analytical properties of the solution it is convenient to intro
duce some "concentration invariants" following from Eqs (24) and (43) with regard 
to the condition of electroneutrality. A typical example of a concentration invariant 
is Eq. (40), which follows by summation of Eqs (24) multiplied by z;jb j , integrating 
the result and determining the integration constant from the conditions (43). By 
substituting the intensity P', 

(46) 

and the divergence P" expressed analogously, 

(47) 

into the transport equations (24) and conditions (43), the potential can be eliminated 
from the formulation of the problem. 

The expression for the surface intensity 

P~ = p'(Z)lz=o (48) 

in terms of the concentration fields is important. In addition to the general representa
tion (46) used for Z = 0, i.e. C; = C~j, Cj = CWj ' independent expression for P~ 
can be found by summation of the boundary conditions (43) multiplied by Zj: 

GWP~ = -S*J*jn* . (49) 

Here we have introduced 

(50) 

and Gw = G(Z) for Z = 0, where generally 

G = 2)~Cj' (51) 

By combining Eqs (46) and (49), P~ can be expressed independent of the current 
density as 

(52) 

In addition to the normalized current density J* and normalized surface concentra
tions CWj, the normalized surface intensity of the electric field is another important 
parameter whose calculation is aimed at. 
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ANALYTICAL SoLUTIONS AND ApPROXIMATIONS 

Analytical solutions of the problem represented by Eqs (24) with the conditions 
(42)-(45) are known for three simple cases which will be briefly discussed below by 
using the new notation. 

Diffusion Asymptote 

This asymptote is introduced ad hoc4 by ignoring all migration terms, i.e. P' = o. 
In this case, the simultaneous non-linear system (24) for the ionic species i = 1, ... N 
splits into differential equations H'biC~ + C~ = 0 with the obvious analytical 
solution 

(53) 

where 

C' - C'(Z - 0) - CHi - C Wi 
WI = i - - 00 • 

fo exp (- biH) dZ 

(54) 

As a special case, for the usual power form of the function H(Z), 

(55) 

where r is the Euler gamma function and q = 1/(p + 2). The corresponding value 
of the diffusion current density follows from Eq. (43) for the clue depolarizer in the 
form 

J:if C' _ 1 - w 
- Wl- . 
n* r(q+l) 

(56) 

For other depolarizers, Sj =F 0, the surface concentration gradients are also given 
by the conditions (43), whence it follows 

(57) 

The concentrations of indifferent species are constant for the diffusion asymptote. 

(58) 

This solution does not satisfy the condition of local electroneutrality, hence the con
centration invariants (46), (49), and (52) give profoundly different estimates of the 
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surface electric intensity: 
p~ = 0, 

p' = (1 - W) S*/[G _ (1 _ W) "z2 bl - Qs.] 
W r( 1 + q) Bt.....l I l' 

and 

707 

(59a) 

(59b) 

Somewhat more realistic estimates of p~, J*, and CWi can be obtained on the as
sumption that the terms CiP" in Eqs (24) are negligible against C;P'. The equations 
can then be integrated and the result for P ~ P~Z, P~ -? ° is the following: 

CBi - CWi _ f"" (b H P) dZ '" r(1 + q) (1 ZiP~ r(2q + 1») -'----'-'-'- - exp - i - ZI '" - -- . 
C~i 0 by b? 2 r(q + 1) 

(60) 

By introducing this into the boundary conditions (43) and the concentration in
variants (46), (49), and (52) we obtain a self-consistent estimate of P~: 

p' = 1 - W X + O(X2) (61) 
W r(1 + q) , 

J* = 1 - W [1 + (W + (1 _ w) r(2q + 1») ZiX] + O(X2) , (62) 
n* r(1 + q) 2r2(q + 1) 

where, in accord with Eq. (59b), 

X=: S*/GB • (63) 

Binary Electrolyte Solution 

This case can be solved exactIy4 by elementary methods, since the condition of 
electroneutrality, ZlC1 + Z3C3 = 0, permits to simplify the system considerably. 
The potential can be eliminated by adding Eqs (24) for both components. The 
intermediate result H'(b1C; + b3C;) + (C~ + C~)' = ° can be rearranged by using 
the relation C; = -(ZI/Z3) C; to the considered form bsH'C; + Cr = 0, where 

(64) 

The concentration field problem has hence a solution analogous to (46), whence 

I (1 - w) b: I ( / ) C' CWI = , CW3 = - ZI. Z3 WI, 
r{1 + q) 

(65) 
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By adding the boundary conditions (43) for both components, the potential is elimi
nated and we arrive at the following expression for the current density: 

J* = C~l + C~3 = (1 - w) b:U - Zl!Z3) 
n* 1 + S3b3 (1 + S3b3) re1 + q) 

(66) 

Physically, only a single ionic species can be discharged, S3 = o. 
The ratio of DdD. is usually expressed by means of the transference number, t1> 

i.e. in our case 

(67) 

From this we arrive at the result in the usual form4 

J* 1 - w (1 - Zl!Z3)1-Q 

n* r(1 + q) (1 - t1)Q 
(68) 

The influence of migration on the current density is apparent by comparing Eq. (68) 
with Eq. (56), which does not involve migration. 

Improved Nernst's model 

With neglection of the convective and accumulation terms, H'(Z) = 0, the transport 
equations (24) can be integrated to obtain the form corresponding to the so-called 
Nernst model 

(69) 

The influence of the convection and accumulation processes is represented here by 
the diffusion thickness for the clue depolarizer 

(70) 

which is considered as known from the solution of the corresponding equations of 
convective diffusion or some transport correlations. An inadequacy of this model, 
which has often been criticized, is that it ignores the dependence of the mass
-transfer coefficients of individual species on their diffusivity. In addition, it also 
ignores the effect of convective diffusion of the indifferent species of different 
diffusivities on the electric potential profile. Both these inadequacies can be widely 
suppressed by an empirical modification of Eqs (69) to the form 

(71) 
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Here, the right-hand side involves a correction for the true diffusion thicknesses 
of the depolarizers in accord with the familiar relation <\ '" DY. The coefficients 'i 
can be empirically adjusted, e.g. so that the final solution gives the known exact 
values of limiting current densities in the laminar diffusion layer for binary electrolyte 
solutions. 

Already Eucken15 , integrating Eqs (69), used substitution of the potential for 
an independent variable. By summation of Eqs (71) multiplied by Zi we obtain the 
concentration invariant 

(72) 

and another form of Eqs (71) 

dCm + ,C = _~Illb~~~ "z,rc. . 
dP m m "b 1 - q L.. I I I 

L.,Sj j Zi 

(73) 

For indifferent species, Sk = 0, the solution is obviously 

(74) 

It remains to solve the subsystem of Eqs (73) for ionic depolarizers. Although systems 
with more than two ionic depolarizers have been considered in the literature16, 

it is practically sufficient to consider only those with at most two ionic depolarizers, 
j = 1,2. In such a case, the solution can be expressed in a relatively simple form 9 

Here, summation is carried out over all indifferent ionic species. The functions E;., 
and Ek are defined as 

(76) 

(77) 

The integration constant PB is the root of the equation 
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To determine the current density, the method according to Eucken1S is the most 
straightforward. Integration of the starting transport equation (71) for the clue 
de polarizer over the thickness of the diffusion layer leads to the equation 

J* SPB - = 1 - w + '1 C 1 dP , * . n 0 
(79) 

where C1 = C1(P) is a known function of the potential P. The migration coefficient 
introduced by Newman is hence given by 

J* '1 fPB 
E = --. = 1 + -- C1 dP . 

J d1f 1 - W 0 
(80) 

The parameters 'I in the starting equations are still undetermined. They must satisfy 
the following requirements: 

(1) The values of (I should depend on the bulk composition and on the diffusion 
coefficients of the present species only. 

(2) For stagnant diffusion layers, q = 0, it should hold good that (i = Zi' 

(3) At equal diffusivities of all species it should hold good that (i = Zi' 

(4) The choice of (i must not influence the diffusion asymptote of the solution 
for S*/GB -+ 0. 

(5) The choice of 'i should ensure the exact value of J*/J:if for binary electrolyte 
solutions. 

From Eqs (56) and (68) we obtain the following expression for the ratio of J*jJ:lf 
for laminar diffusion layers in binary electrolytes: 

(81) 

The solution for the Nernst model, Eqs (71) for i = 1, 3 and S3 = 0, gives the simple 
result 

(82) 

The coefficients (I can be adjusted in accord with the requirements (1)-(5) in several 
ways, one of which will be used here. For the species participating in the electrode 
reaction we set 

(83a) 
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and for indifferent ionic species 

(83b) 

where Ilm = z!Cm/,j);Cj, De = ~)jDj' Hence, for the binary electrolyte solution 
'1 = Zl and 

(84) 

whence it follows easily that 

(85) 

For the opposite situation, i.e. excess of indifferent ions, S*jGB -+ 0, the potential 
difference PB is so small that the exponential functions in Eqs (78) and (79) can be 
expanded in series according to the Taylor theoreme. This leads to the asymptotic 
result 

(86) 

J* 1 + 1 + W ZIPB . J:u = 2 1 - W 
(87) 

User Program MIGR-l 

The analytical solutions described above are useful mainly for understanding the 
nature of the migration effects in multi ionic systems and for qualitative considera
tions. For quantitative treatment of data, e.g. in determining the true diffusion co
efficients by electrodiffusion methods, it is desirable to know the migration coeffi
cients E = J!Jdif = J*!J:lf with an accuracy of 0·1 per cent. To this end, it is ne
cessary to know the exact solution which can only be obtained by numerical integra
tion of the transport equations with the boundary conditions. 

In the Runge-Kutta integration method, the integrated differential equations (24) 
must be rearranged to the form giving the derivatives of the highest order as func
tions of the other local quantities, 

- C'I' = b,.{p + 2) Zp+l + P'C' + P"C Zj I Zj I' (88) 

The gradient P' and the divergence P" of the electric potential are expressed as func
tions of concentrations and their gradients by Eqs (46) and (47). The boundary 
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conditions give the solution composition in the bulk, C;( co) = CD;, and the surface 
concentration of the clue depolarizer, C1(0) = w. Other parameters must be deter
mined during solving the problem. 

In the Runge-Kutta method, the solution procedure consists in integrating the 
equations (88) with the initial conditions 

p~ = -S*J*jn*Gw , (89) 

C~; = sib;J*jn* - ZiCWiP~ = (J*/n*) (sibi + ZiCWiS*jGW), (90) 

J*jn* = C~ij(l + ZlWS*jGW) , (91) 

where Gw = IZ~CWi. To specify the initial conditions fully, it is thus sufficient to 
know all surface concentrations and the surface concentration gradient of the clue 
depolarizer. 

The task of numerical solution is thus reduced to seeking a suitable iteration 
strategy for finding the unknown parameters in the initial conditions. The following 
strategy proved well (and suitable for automatic calculations of large ensembles 
of problems) even at very low concentrations of the indifferent electrolyte under 
limiting conditions: 

(1) The results for a purely diffusion asymptote, Eqs (55) to (58), are used as 
starting estimates. 

(2) Integration is carried out on an interval Z E (0, Zoo) sufficiently long to attain 
the conditions Max IC;I > 80 (= 10- 7). This leads to certain estimates of the con
centrations in the bulk, CQi • 

(3) New estimates of the initial conditions are made on the assumption of linearity 
and independency of the solutions for the particular sp:cies 

(4) Iterations are repeated until the values of CQi attain the preset values of CBl 

with an accuracy of 8Q' i.e. Max ICQi - cB;j < 8Q( = 10- 5). 

In common cases, i.e. with solutions containig indifferent electrolytes in usual con
centrations, or for other than limiting regimes, IV =1= 0, ten to fifteen iterations are 
needed to attain a relative accuracy of 10- 7 • More iterations are only necessary in 
calculating the limiting currents in almost binary electrolytes. The integration is 
carried out by the Runge-Kutta-Merson method with automatic increase Qf the 
step length. At an initial step !!.Z = 0·001, the upper estimate of the inaccuracy in 
CQi is about 10- 5 . The mean time required for the calculation of one variant on 
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a Commodore PC 10 computer is 30 s, so the greater problem is the repeated keying-in 
of input data about transport regimes and electrochemical systems. For the purpose 
of automation, the user program MIGR-1 was equipped with auxiliary subroutines 
to organize the keying-in of data with the use of a mini-data bank containing the 
necessary physico-chemical constants (diffusivities, charge numbers, and stoichio
metric coefficients) for common electrochemical systems. A diskette with the program 
and auxiliary modules is available by the author. 

RESULTS AND DISCUSSION 

A typical output from the computer is reproduced in Table I. * We consider a three
-ion system, H+, K +, and Cl- with charge numbers Zj == z[i], diffusivity ratios 
hi 1 == d[i], and stoichiometric coefficients Sj == s[i]. The second part of the table 
contains parameters indicating that the calculations were performed for the Light
hill-Acrivos transport regime, p == preg = 1, under limiting conditions CW1 == 

TABLE I 

An example of computer output 

MIGR1 

elchem. system cons·idered: file " hypocl " 

i component cb[i] 
t hydroxonium 1. 0000 
2 potassium 1.0000 
3 chloride 2.0000 

preg 
cw[l] 

1.0000 
0.0000 

cdf 

z[i] d [1] 
1 1.00000 
1 0.21016 

-1 0.21821 

-1.1198 

variat,ion of bulk cone. rat.lo 

rat cb[2] cw[2] cw[l] dcw[ 1] 
0.9000 9.0000 9.4798 0.0000 1.2144 
0.8000 4.0000 4.4629 0.0000 1.3115 
0.6667 2.0000 2.4372 0.0000 1. 4482 
0.5000 1.0000 1.3979 0.0000 1. 6402 
0.3333 0.5000 0.84[.8 0.0000 1.8752 
0.2000 0.2500 0.5361 0.0000 2. 1255 
0.1000 0.1111 0.327f 0.0000 2.3979 
0.0400 0.0417 0.1873 0.0000 2.6606 
0.0100 0.0101 0.0864 0.0000 2.9031 

MIGH1 

sli] 
1 
0 
0 

cur/cdf 
1.0845 
1.1711 
1.2932 
1.4647 
1.6745 
1.8980 
2.1413 
2.3758 
2.5924 

5.3.1987 11:59:0 

b 0.0001 
eps 4.0E·-005 

potm Sigh 
·0.1469 -·0.0500 
-0.2401 -0. 1000 
-0.3099 -0.166'1 
--0.3322 -0.2500 
-0.2827 '0.3333 
·-0.1570 -0.4000 

0.0736 -0.4500 
0.4421 -0.4800 
1.0'174 -·0.4950 

5.3.1987 12:21:8 

• The sign of identity is used in the text below to denote equivalence between mathematical 
symbols (on the left-hand side) and the symbols used in the program and printed output. 
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== cW[l] = O. Then follows the datum about the limiting diffusion current, J* == 
== cdf = n*/r(4/3) = -1'1198. The parameters hand eps give the initial integration 
step and the required accuracy of the calculation of CQi , 

The third part of Table I contains the numerical results. In the given case, the 
concentration ratio 

r= (92) 

is changed automatically. The parameters necessary for specifying the initial condi
tions, CWi = cw[i], C~l = dcw[l], the migration coefficient E == cur/cdf, and the 
parameter of the potential profile 

PM = lim [P(Z) - ZP'(Z)] == potm 
Z-+oo 

are indicated. The last parameter, S*/GB == S/gb, serves for correlation of the data. 
The calculation exemplified in Table I corresponds to the conditions considered 

by Newman (Table II in ref. S) for the "drop" regime. For r > 1/3 the results agree 
very well, larger deviations are apparent at low concentrations of the indifferent 

FIG. 1 

Concentration profiles for the depo'arizer, 
H +, and indifferent electrolyte ion, K + , 
in polarography with a dropping electrode 
(p = 0) in HCI-KCI system. 1, 2 Depolarizer; 
3,4 K+ ions; 1, 3 r= [K+]/[Cl-] = 0'5; 
2, 4 r = 0'04; 5 concentration profile of H+ 
ions at a great excess of K + 

4 

/C,'/ 

z 
FIG. 2 

Profiles of concentration gradients in HCI
-KCI system. The symbols have the same 
meaning as in Fig. 1 
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electrolyte. They are probably caused by the relatively large integration step, !1Z = 
= 0'01, used by Newmans in the finite difference method. It is apparent from Figs 1 
and 2 that for r < 1/3 both the concentration of the indifferent electrolyte and its 
gradient near the surface change too rapidly for the system of equations to be inte
grated accurately enough by using steps !1Z = 0·01. 

Exact values of the migration coefficients E for the system H+ -K + -CI- for 
w = 0, p = 1 are shown graphically in Fig. 3 in comparison with some approxima
tions. It can be seen that none of the considered approximations can be used for 
quantitative evaluation of E. It is surprising that the oldest and simplest empirical 
formula 

(93) 

proposed by Heyrovsky13 gives for r > 0·1 still the best estimate. Failure of the 
asymptotic expansion (62), curve 6, suggests that the terms P" C1 cannot be neglected 
against pIC; even for GB -+ 00. 

In Fig. 4 the dependences of E on the transport index p are shown at limiting 
conditions, W = 0, for the system Cu2 +-H+-SO!-. It can be seen that this depen-

3 

1 . 

E f .. \··l 
\ 2 4 .. "§~.,, 

6 "'-.. ..:::---" 
'-.~ "'.'-.~ 

... " 
"~"" 1 

a r 1/2 

FIG. 3 

Migration coefficient E = J/Jdif in polaro
graphy of a solution of HCI and KCI with 
a dropping electrode. 1 Exact numerical 
solution; 2 Newman's numerical solution, 
3 improved Nernst's model, Eq. (8); 4 Hey
rovsky's approximate formula E = 1/ 
/(1 - (1); 5 Nernst's model, Eqs (56) and 
{68); 6 diffusion asymptote, Eq. (62) 
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0.01 

0·04 

0.1 

0-2 
0·33 

05 
0.66 

0·8 
a q 05 

FIG. 4 

Dependence of migration coefficient in a solu
tion of CuS04 and H2S04 on transport con
ditions, characterized by the exponent q = 
= 1/(2 + p). The numbers refer to the 
values of r= [H+l/2[SO~-1 
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dence is very weak; to estimate it, it is sufficient to know E for three values of q = 
= 1/(p + 2), corresponding to the Nernst stagnant layer (q = 0), laminar con
centration layer (q = 1/3), and potentiostatic transition (q = 1/2). For a binary 
solution (r = 0), Eq. (68) gives the following simple result 

(94) 

For redox electrode reactions with ionic products, e.g. for the systems hexacyanofer
rate(III) and (IV), iOdide-triiodide, etc., the estimates come much closer to the exact 
values9 • 

To calculate the migration coefficient under limiting conditions, it is sufficient 
to know the concentrations of the species in the bulk, their diffusivities, and the 
type of the transport regime. Thus, it is possible to calculate the correct values of 
E = J/JdiC corresponding to the primary literature data. The new treatment of the 
data about migration effects is illustrated in Figs 5-9 for two types of transition 
potentiodynamic experiments17 ,18. All these experiments, in which the thickness 
of the diffusion layer is proportional to the square root of the time, belong to a single 
class of transport situations, p = O. In all cases considered, the solutions contain 

2 
---..... 

E 

o 

FlO. 5 

"-
2""'-
1 \ 

\ 
\ 

\ 

Migration coefficients in chronopotentio
metry of solutions of TI2S04 and K~S04' 
1 Exact numerical solution; 2 approximate 
formula according to Heyrovsky; experi
mental data were published by Morris 
and Lingane17 in numerical form; diffusivi
ties are from standard tables 7 

2 

E 

• 
o 

FlO. 6 

Migration coefficient in chronopotentiometry 
of solutions of CUS04 and K2S04. 1 Exact 
numerical solution; 2 approximate formula 
according to Heyrovsky; experimental data 
were published by Morris and Lingane17 

in numerical form; diffusivities are from 
standard tables 7 
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three ionic species, N = 3, one of which is the depolarizer. The relative composition 
of such solutions can be characterizeds by a single parameter, r, according to Eq. 
(92). The classical theory for a stagnant Nernst layer3 ,IS implies that the data can 
suitably be presented by using the argument 

since the dependence of E on it is roughly linear. 

FlO. 7 

Migration coefficient in voltammetry of 
TIN03-KN03 solutions. 1 Exact numerical 
solution; 2 Heyrovsky's approximate for
mula; experimental data were published 
in graphical forml8, diffusivities are from 
the same source18 

E 

21 

0 

~ 
~ 
~ 

0 r 1/3 

FlO. 8 

Migration coefficient in voltammetry of 
Cd(N03h-KN03 solutions. For explanation 
see Fig. 7 

2 

E 

o 

3 

£ 

2 

1 
0 r 1/3 

Flo. 9 

Migration coefficient in voltammetry of Cu 
acetate-Li acetate solutions. For explanation 
see Fig. 7 
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A very good agreement between theory and experiments is observed for solutions 
of TI + ions, Figs 5 and 7, and for acetate solutions. In other cases, the agreement lies 
within the errors of 10%, which are common in electrodiffusion experiments owing 
to lack of informations about the concentration dependences of diffusion coeffi
cients. For comparison, approximate values of E calculated from Eq. (93) according 
to Heyrovsky are included in the figures. 

CONCLUSIONS 

1) The transport model of the laminar diffusion layer is adequate for description 
of transport processes in most regimes encountered in electrodiffusion experiments_ 
It is therefore suitable for quantitative description of electrodiffusion data. Its further 
refinement is possible by including the dependence of diffusivities and activities 
of the particular species on the solution composition, which will form the subject 
of a further communication. 

2) The underlying phenomenological description of the laminar diffusion layer 
according to Newman was generalized for non-linear velocity profiles at the elec
trode surface and non-zero surface concentrations of the working depolarizer. 

3) The new formulation of Newman's model, mainly the explicit formulae fo[" 
the gradient and divergence of the potential in terms of concentration gradients~ 
permits the use of standard numerical techniques. A user program MIGR-1 was 
written in PASCAL for the purpose of laboratory calculations. 

4) The influence of migration observed in voltammetric and chronopotentiometric 
transients was for the first time compared with theoretical calculations. The agree
ment is surprisingly good; the deviations may be due to inaccurate diffusivity data 
or non-fulfilment of the condition f> "'"' .Jt in the experiments. 

5) Since the corrections for migration can be calculated exactly without difficulties~ 
quantitative electrodiffusion measurements can be carried out without using a large 
excess of indifferent electrolyte, wherever it may be convenient from the experimental 
point of view. 

The author is grateful to the Alexander von Humboldt Foundation, Bonn, F.R.G., for the liberal 
donation of the Commodore PC 10 computer. 

LIST OF SYMBOLS 

b j = D1 /D j 

Cj 

CBl,CWj 

Cj(Z) = Cj/CBl 

cj(Z) 
Dj 

diffusivity ratio 
concentration of species i 
values of Cj in the bulk and at the electrode surface 
normalized concentration profile 
normalized concentration gradient 
diftusivity, defined by Eq. (2) 
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Ds 
De = ~);Di 
E= JIJdif 

F 

G = ZrCi 
H'(Z) 

J 
J 

diffusivity of binary salt solution, Eq. (64) 

migration coefficient 
Faraday's constant 
normalized ionic strength 
normalized streaming velocity 
current density in the bulk 
current density on the electrode surface 

Jdif current density calculated without regard to migration 
J* = JOol FCB1 D normalized current density 
Mf' ionic species i with charge number Zi 
N number of ionic species in solution 
N i flux intensity of species i 
n* = - LSiZi stoichiometric coefficient of electrode reaction 
p 

p 

Q=1/(p+2) 

normalized electrostatic potential 
exponent characterizing transport in the diffusion layer 
parameter 

719 

r metric coefficient of the boundary layer coordinates; concentration ratio of in-
different electrolyte 

R gas constant 
S* = - Z>izibi transport-stoichiometric coefficient of electrode reaction 
T absolute temperature 

x,y,z 
Z = zloo 
Zj 

P(x) 

'i 

time 
transference number 
velocity vector 
parameter 

boundary layer coordinates 
normalized coordinate in the diffusion layer 
charge number 
longitudinal velocity profile 
modified parameter of the Nernst model 

r= t"Lzrci ionic strength 
r(x) gamma function 
OJ = F(CBj - CWj) Djn*lsjJdif Nernst thickness 
00 effective diffusion thickness 
lim = Z~CrnILZrCi parameter 
1 parameter of the solution for Nernst's model 

J1-i 

0' 

Subscripts 

electrochemical potential 
convective parameter of the similarity transformation 

B refers to the bulk of the solution, i to species i in solution, j to a depolarizer (j = 1 refers to 
the clue depolarizer), k to an indifferent species, m to species m in solution, Q to value obtained 
by integration from Z = 0 to Z = CXJ, and W refers to the electrode surface. 

The first and second derivatives with respect to the similarity variable are denoted by primes 
(' and If). The sign of summation, L, with subscript i, j or k refers, respectively, to all species, 
to depolarizers, and to indifferent ions. 
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